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Abstract

The notched-noise masking technique and associaled methods of analysis have
seen wide use in the study of auditory frequency selectivity.  Unfortunately,
formulae given in the literature for the prediction of detection thresholds for roex
filter shapes, and for the calculation of cquivalent rectangular bandwidths are in
error. The effect of these errors is small for the vast majority of studies on
normally hearing listeners but may be serious for studies with hearing-impaired
listeners. The erors can be avoided by the usc of appropriate limits of integration,
as shown in the new derivations given here. Tt is also shown that the use of
equivalent rectangular bandwidth as a summary measure of filter sharpness is
often inappropriate (as it is not applicable 10 a filier shape that is frequently used),
and altemnatives arc suggested.

1. Introduction

The idea that the auditory system perforins a kind of frequency analysis on
incoming sounds, and thus may be likened 10 a filter bank, has long been a
mainstay of auditory theory. Only relatively recently, however, have there been
significant advances made in psychoacoustical methods for determining the
shapes of these "auditory filters". Although a variety of experimental techniques
has been proposed (e ., Houtgast, 1974, 1977; Pick, 1980; Zwicker, 1974), the
notched-noise masking method and analysis procedure introduced by Patterson
and his colleagues has had, perhaps, the most extensive development. It has been
used to: investigate changes of auditory filier bandwidth and shape with changes
in frequency and level; explain the discrepancies and similarities among auditory
filter bandwidths estimated from various methods (e.g., critical ratios,
psychophysical tuning curves, and notched-noise masking studies); and,
characierise the effects of aging and hcaring impairment on suditory filier shapes
(see Patterson & Moore, 1986, and references therein).

The basic procedure for a notched-noise experiment is straightforward. In the
simplest and most common case, the threshold for a sinusoidal probe tone of fixed
frequency is determined in the presence of a number of relatively wide-band noise
maskers. Typically, the noise bands are of constant spectral level and have a
spectral notch cenured on the probe frequency. One noise band without a notch is
also used. Thresholds for the probe tone arc thén plotted as a function of notch
width. Although there are a number of variations on this basic design (c.g., the
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In short, the analysis procedure claims that this particular lisiener has some (if
severely degraded!) selectivity. Consider, however, what result we would
expect for a listener with no selectivity whatsoever - that is, with an auditory filter
that is completely flat. Because the masking bands of noise have fixed edges (as
is commonly, although not uniformly, done), the amount of energy in the noise
must necessarily decrease as noich width increases. Therefore if the main
assumption of the power spectrum model of masking holds (that the detectability
of the probe is determined completely by the signal-to-noise ratio at the output of
the auditory filter), then even a listener with no measurable selectivity will show
thresholds that decrease with increasing notch width. For example, since the
noise band here was assumed 10 be 1.6 kHz wide, then the widest noich of 0.8 kHz
will remove half of the energy in the noise, a drop of 3 dB. In fact, the data in this
example were generated by a comrect roex(p) model with p set 10 O (that is, an
infinitely wide auditory filter).

In the next section, I develop the power spectrum model for the roex family of
filter shapes 50 as to generale correct estimates of p for all sets of data. It will be
shown that the error in estimation here (and the published derivations this model
fitting was based on) arises from the use of incorrect limits of integration. For the
same reason, a formula given in the literature for the calculation of cquivalent
rectangular bandwidth is in error. Fortunately, these errors are only serious when

sclectivity is severely degraded in comparison to what is typically found in
normally-hearing listeners.

3. The power-spectrum model of masking for roex filters

The power-spectrum model of masking, especially as applied to roex filiers,
has appeared in a number of arnicles in slightly varying form. Here, we will
generally follow the derivation reported in Patterson and Moore (1986) which
presents a review and distillation of the previous work.

In its most general form, the power-spectrum model of masking may be written
as:

oo

Ps=kIN(DW(D df, 0]
0

where P is the threshold of the probe tone (in power units), N(f) is thc power
spectrum level of the noise as a function of frequency f, W(f) is a weighting
function representing the squared magnitude of the auditory filter's transfer
function, and k is a constant representing the efficiency of the detection process
following auditory filtering.

For notched-noise maskers, which can always be thought of as consisting of
two bands of noise, N(f) has a constant value of N, over cenain frequency limits,
and is 0 otherwise. Also, as we are assuming that the noich ¢dges are equa-distant

from the probe at frequency f,, we need only concem ourselves with equations of
the form:

1Young aduls normal lisieners would lypically exhibit p values of about 15 in this condition.
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fo-awpy f
Pg=k Ng W(Dgf+kNojW(Ddf, )
fio (oW /p

where the first 1erm on the right hand side (RHS) accounts for the lower band of
the masking noise, and the second term accounts for the upper ba_md. The extreme
frequency limits of the masker are represented by fio and [pj, whn!c nw represents
the total notch width. For the no-notch condition, the upper |l.|‘nll of the first
integral and the lower limit of the second are both set to f, by k.:mng nw .-.-.'0. ‘

The shapes of the roex family of filters are more conveniently described in
terms of a variable known as g, rather than directly in frequency, where:

g= If-i'o!/fo. 3

Note that [, is the frequency of the probe, and hence the ccnm:_ frequency (cf) of
the auditory filter under consideration. Thus g is the distance in frequency from

the filter cf, normalized by the cf. )
For the first integral on the RHS of (2), f € fo whereas for the second integral,

f 21, Therefore, we can avoid the use of the absolute value operator by
rewriting (2) as:

fo-nWb fh
P,=kNg Ror-,x((fo-n/,«o) df +k Noj ROEX((f-fo)/fo) dr,
flo fo¥nw/y

where ROEX() is one of the roex family of filters substituting for W(l‘).. To
convert the variable of integration to g, we note again that for f > [, as in the

second integral of (4):
g = (Mo, ()
fo=for+fo. ©®
and taking derivatives with respect (o g on both sides of (6) that:
df/ag = d(fo 8 +o)dg = fo , (v)]

50 that:

df = [, dg. ®)
Similarly, when [ < {4, it is casy to see that:

df = - f,dg. Q)
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Therefore, (4) becomes:

Bnw Bhi
Pe=-kNo foj ROEX(g) dg + k N, fOJ ROEX(g)dg,  (10)
8lo Borw

where g), and g),; are the extreme frequency limits of the masker now expressed
intermsof g, and gy = NW/2 Mo the transformed nolch width. For frequencies
that are less than f, (first integral on the RHS of equation 10), the transformation
1o g is monotone decreasing. Therefore, as fy, < [, - nw/3 (in order for there to
be a band of noise below the notch at all), so g3, > g,,- Since the noise power is

positive, so too must the integral be positive, representing the power of the lower
noise band passed by the filter. This accounts for the negative sign preceding the
first integral. For ease of reading, we can simply reverse the limits of that
integral, changing the minus sign to a positive one to obtain:

) Bhi
Po=kNg foj ROEX(g) dg + k N, foj ROEX(g) dg . Qan
&nw Erw

This is the most general expression that can be obtained for the roex family of
filters under the assumptions of constant noise spectrum level and symmetry of
notch and probe. In Patterson and Moore's (1986) derivation, fi, = 0 Hz while
fpi=o=, leading to gy,=1 and gyj=o0. This is equivalent 1o assuming that the
masker is infinitely wide, extending from 0 Hz upward. Patterson and Moore
then go on to argue thai, as the filter is symmetric in g, the two integrals in
equation (11) are equal, so that equation (11) may be reduced t0:

oo

P =2k Ny f, J. ROEX(g) dg ay (12

Enw

In fact, it is clear from equation (11) that the two integrals are nor equal,
because g, # gpj. The error arises because roex filters are nor strictly
symmetric, bul are only symmetric for the frequency range extending from 0 Hz
to 2f, Hz. This can be seen most clearly by noting that the upper part of the filler
shape (F > ) extends lowards infinity, while the lower pan (f < [,) can only
extend to 0 Hz and no furiher, as a filier value for negative frequencics is
nonsense in this context. Relatively sharp filters go to zero fast enough in both
directions from [ so that the 1wo integrals in equation (11) are approximately
cqual, making cquation (12) accurate enough for most uses. For shallow filters
(as typically occur for hearing-impaired listeners), the RHS of equation (12)
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approximates the RHS of equation (11) rather poorly. -
The two integrals in equation (11) can be made equal for appropriate

integration limits. As implied above. if g1, = Bpi. then cquations .(ll) and (12.)
arc equivalent (substituting ghi for the upper limit of ll'\t’: mlcgral. in (ll))._ Thlns
condition obtains nearly universally in published empirical suud:c_s. and simply
indicates that the upper and lower limits of the masker are cqua-distant from the

probe. ' )
In order to demonstrate more clearly the effects of these various assumptions,

we shall now assume use of the simplest member of the roex family, the so-called
roex(p) model defined by:

roex(p) = (l+pg) e P8 . (13)

Calculating the indefinite intcgral gives:
J(l+pg) e8dg=-p!(2+pg)e e . (14)

To obtain the predictions of the rocx(p) model according to Patierson and Moore,
we substitute this expression into (12), to obtain:

P = -(2k Nofop)(2+pgle™| . (s

gnw

Finally, noting that:

lim (2+pg)e® = 0 , (16)
g-> oo
Po= 2k Ngfop ! (2+pga,) € . (17

This is the (incorect) equation Pauerson and Moore give in o'rder to predict the
threshold of the probe (in power terms) for a pa.nicula.r notch width. For the .case
810 = Bni. the use of the appropriate limits of integration makes (12) become:

o )

Pg= -(2k Nof, p 1) (2+pg) e P8 - . (18)
Bow
and: _
Py = 2k Nofop' [(2+pg,,) €7~ - (2+pgy) ePe ] (19)

There is thus an extra term in the equation compared 1o thfu given by Paucrsc?n
and Moore. Because this extra term is always positive, the incorrect formula will

always predict a threshold greater.than the correct one. _ )
'I‘l):e l:nagnimde: of the error introduced by the use of equation (17) instead of
equation (19) can be examined by looking at the difference (in dB) between the

two predictions:
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Error = 1010g(Py comeci) - 10108(P ; yrong) (20)
= 1010g(P comcar/P, , ) @1
where, afler cancellation of appropriaie terms:

Pocomat/Py ypong = (PBow) € . (24pg),) P8 @)
(2+pg,,,) 7P

| . (+pgy)erim 23)
(2+pg ) € Po

Assuming g, = 0.8 (representative of the values typically used in notched-
noise studies), the crror as given by equations (20)(23) was calculated for Bow
between 0.0 and 0.4 inclusively. For p 2 §, the maximum error magnitude was
always less than 1 dB, decreasing with increasing p. For a fixed p, the magnitude
of the error increases with g .. For cxample, with p = 3, the magnitude of the
eror at g, = 0.0 was just under | dB, while at g, = 0.4, i1 was 2.3 dB, It
thus appears that errors will be small as long as auditory filtering is reasonably
narrow band (as indicated by a moderately high p value). As normal listeners
display auditory filtering consistent with p of ai least 7 (occurring at the lowesi
frequency tested of 125 Hz - Fidell, Horonjeff, Teffeteller & Green, 1983; Rosen
& Stock, 1989), the ervor is inconsequential for studies of normal hearing, being
less than the typical variability in measured thresholds. Note however, that
lowering the value of g, will cause greater ervors.

In most applications of the roex(p) model, however, the value of p is estimated
from a known set of masked thresholds. Two ways were used to determine the
crrors in estimating p arising from use of the the incorrect formula.

Firstly, the correct roex(p) formula (equation 19) was used to generate a set of
masked thresholds (in dB) for 0 S p < 20, k = .5 (10logk = -3.0 dB) and 8ow
equal to 0.0, 0.1, 0.2, 0.3 and 0.4 (a reasonable set to use in notched-noise
cxperiments). Then, for each synthesized data set (from a single value of p), a
minimization routine was used to estimate valucs of p and 10logk (symbolized as
Pesy and 10logk, ) that best predicied the data using the jncorrect formula
(cquation 17)2. For both parameters, the magnitude of the error decreased with
increases in p, with 10logk , never being further from 10logk than 0.65 dB.
The value of p,, could be far from p however, as has already been scen in a

previous section. Figure 2 shows for 0 < p < 15 the relationship between p and
Pest- As noted carlier, the error is greatest for low p values. A true p of I, for

2As recommended by Patterson and Moore (1986), all model fits were on the basis of values
expressed in dB. Therefore, equations (17) and (19) were converted by laking logarithms (to the
base 10) and multiplying by 10. The fitting procedure was implemented using the SAS procedure
NLIN which uses  least-squares criterion for minimization. In order 1o avoid the calculation of
partial derivalives, the multivariate secant lechnique (also known as false position) was used. For
further deuails sce the SAS/STAT Guide for Personal Compuiers 1987.
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instance leads to a p ,,, of 3.06, a percentage error of over 200%. As long as
p > 5, the percentage error is less than 10%, and becomes less than 1% for
p > 9.6. At p values near 20, the ergor in'p is less than .005%, and on the order

of 0.0005 dB for 10logk. Again, this suggests that the error is relatively
inconsequential for normal listeners (where p is almost always greater than 7), but

could be serious for hearing-impaired ones.

Figure 2. The 16
relationship between

the true p used to 214
generate a synthetic
data set and the p
estimated on the basis
of an incorrect
formula, both based
on a roex(p) filter
shape (solid line). The
dashed line shows
what would be
cxpected if there was
no error in estimation.

ed p val
s ®

wrongty estimat
o N &2 O X
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true p value

Secondly, a set of data from normal listeners was analyz;d using both the
correct and the incorrect formula, in order to estimate the magnitude of errors that
might arise in considering genuine data. The analyzed d‘ala came fro_m a study of
low-frequency selectivity by Rosen and Stock (1989). Five normal hstel.\ers were
tested at four probe frequencies (125, 250, 500 and IQOO Hz) anfl four noise levels
(40 10 70 dB SPL/Hz in 10 dB steps) at five symmetric notch widths (0.0, 0.1, 0.2,
0.3 and 0.4). The bands of noise were constructed such that gy, was 0.72 for
probes at 125 Hz and 0.8 otherwise. Data sets were sclected so as to have low p
values, with a few high p sets for comparison. As expected, nearly z?.ll of !hc
lowest p data sets were for probe frequencics of 125 Hz (the sole exception being
a1 250 Hz). Tn agreement with the conclusions derived from synthetic dala: ¢eITorS
in p were more serious than errors in 10iogk. Values of 10logk estimated
correctly were, with one cxception, within 0.3 dB of the values of. 10logk
estimated by n:se of the incorrect formula. Maximum percentage errors in p were
about 5-7%, for data that was fit with correct p values near 7. One set of dala,

. because it indicated a fairly low degree of selectivity, led to much greater errors,

with an incorrect p of 3.4, and a correct one of 0.7, a percentage error of 386%.
The error in K, 100, was greater than for the other data sets b.ut still only abou‘l 9.8
dB. Although this data sct may not in fact be repres?nlauve of }hc selectivity
typically displayed by normal listeners, it is a warning thz!: using the wrong
integration limits can lcad to scrious errofs, even in normal listeners (.al least at
low frequencies). For impaired listeners, the errors may be very serious. qu
normal listeners with probe frequencies at 250 Hz and above, the error in p is
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unlikely to reach even a few per cent, .
So far, we have only developed formulae for the case g, = gy,;. In the most

gencral case, g, # gpi, and predictions from the roex(p) model are given by:

Pg=kNofop ! [2(2+pg,,,) e Pem (24pg,,) ePBo_(2+pg ) ePini | (24)

Thus, equation (19) can be seen to be a special case of this more general equation.

Other roex filter shapes have been defined. The most complex, the so-called
roex(p,w,t) model consists of two rounded exponentials, one of which dominates
in the centre of the passband of the filter, and one of which dominates towards the
filter tails. Patterson and Moore's (1986) derivation for this model contains the
same error as detailed for the roex(p) model, and the correct derivation would
follow the same line as given above. As the roex(p,w l) model has not seen much
use (few experiments have the number of data points needed to tightly constrain a
mode! with four free parameters, nor sufficient range to define the filter tails), we
omit the correct formula here. However, it is as well 10 note that since the tails of
the filter in this model are typically much shallower than the falloff in the
passband, the errors caused by the use of the incorrect formula will be
correspondingly greater.

Finally, much use has been made of the so-called roex(p,r) model, given by:

roex(p»f) = (l-r)(l+pg) e'Pg +r . (”)

This is simply the roex(p) shape with an additive constant and scaling factor to
keep its value equal to unity at its centre frequency. Errors in using this model are
likely 10 be much less severe than in the other 1wo models because some
integration limit less than infinity has 10 be used in order to keep the integral in
equation (12) bounded. Patterson and Moore suggest setting gy, = 0.8, a value
in keeping with what experimenters have typically used. It seems more sensible
simply to use the integration limits appropriate to a particular experiment, rather
than setting an arbitrary value. It is easy to imagine situations in which gy, could
be greater or smaller than 0.8.3

Finally, it is well to note that the error of assuming unbounded filter symmetry
in derivations for masking studies has not only been confined to roex filters and
notched-noise experiments. Glasberg, Moore and Nimmo-Smith (1984) for
example, make the same error in deriving predictions for rippled-noise maskers
and Gaussian filters. As that study investigated the selectivity of normal listeners
at 1 kHz and low levels, however (where p is typically about 25), it is unlikely
that the error in derivations would be important.

31n the mode! fits used here, the experimental procedure was such that gy, and gy were not
only equal, but constant over notch widths. Such a situation arises when a single band-pass noisc
is modulated by a sinusoid at f, in order 10 create the notched noise (¢.g., 8s used by Weber, 1977;
Rosen & Stock, 1989). In other paradigms, two separfitc low-pass bands of noise are modulated
independently to create the noiched noise (e.g., Patterson 1976), making gy, and gy, vary with
notch width, In that case 100, the true limits of the noisc should be uscd as the integration limits, a
task which requires litue extra programming work.
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H i 4. The calculation of a bandwidth parameter

In reporting results from roex modelling of masking experiments, it is
relatively rare to see p values alone direcily quoted. Instead, a more generally
B understood measure of bandwidth is typically given, the equivalenr rectangular

i’ bandwidith (BWp - also known as equivalent noise bandwidth). The BWgy of

) any filter is defined as the bandwidth of an ideal bandpass filter (i.c., with cutoffs

of infinite slope) which would pass the same power of white noise as the original

filter, assuming the efficiency of ransmission for the ideal rectangular filter 10 be

2 equal to the maximal value of the filter under consideration. Because the three

] roex filters have unity gain at their peak:
|
l
i
{
i

BW g

j ROEX(! fo-ru/fo) df
0

fo

= _[Roxzx(( fo-0)r,) df + _[ ROEX(( f-fo)/f,) df
0 fy

] oo

f = fOJ ROEX(g) dg + foj ROEX(g) dg . (26)
: 0 0

(following roughly the same steps as in the previous section, with ;= 0,
fy = = and nw=0). For the roex(p) filter, this becomes:

BWegp = 4fp - fo(2+p)e P an
P P

Patterson and Moore (1986) give the BWgy of this filter as 4f°/p. This

!

i

{

" discrepancy ariscs from the same error discussed in the previous section - that of
!l assuming the roex filler is symmetric for unbounded g. The BWgp that Patterson
i ’ and Moore report results from substituting g,,, = 0 into equation (12), and then

l' taking the integral of the roex(p) filter. Again the error is inconsequential for

normal selectivily as can be scen by calculating the percentage crror between
. " these two values:

g %ERROR = (BW gr.correct - BWgrwrong) x 100 ,
g BW gr.correCT

R
"j. = e @) @
'E‘ 4-(24p)e’ P
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Figure 3 shows the percentage error as a function of p. For p 2 6, the emor is
less than 1%, but increases sharply with decreasing p, with a 20% error for p
values just below 2. Again, these errors can be serious for degraded auditory
filtering.

Figure 3. The Or—v
percentage error in
equivalent rectangular
bandwidth for a -10
roex(p) filter —
calculated by a correct g
and an incorrect « —20
formula. g
o
-30
- 40
1 3 5 7 9 11

value of p

Perhaps more disturbing, equivalent reciangular bandwidths are quoted for roex
filters which do not have a finite BWgg - to wit, roex(p.r) filters. As noted in the
previous section, roex(p.r) filiers are the sum of a roex(p) filter plus a constant.
Therefore, their BWgeps are infinite.  Yet Moore and Glasberg (1983), in
summarizing the outcomes of 6 studies using roex(p,r) filters, give all their resulis
in terms of equivalent rectangular bandwidth. In fact, the BWgg used in that
paper is simply 4fn/p. an approximation to BWgp for roex(p) filters.

At least four aliernatives are available for reporting a measure of bandwidth.
Firstly, one can continue to quote BWp's, but in reference to roex(p.r) filters to
use some son of circumlocution such as "the equivalent rectangular bandwidth of
a roex(p) filter with p derived from a roex(p r) filter”. This is perhaps the least
desirable alternative. Secondly, one can take the route suggested by Patterson and
Moore for the derivation of thresholds from the roex(p,r) model by setting a finite
upper integration limit in equation (26). A value of gy = g,, = 1, might be
preferabic to gy = g)o = 0.8, in that it represents the maximum extent 1o which
the roex family of filters is symmetric (g;, = 1 corresponding to a lower

integration limit of 0 Hz). It can then be shown that this modified equivalent
rectangular bandwidih is given bv:

BWegamop = 2fo [p! (1-r)(2- (2+4p) e P)-r] @) (29
The advantage of this formula over simply using the BWgg from a roex(p) filter

is that it depends on r as well as p, as clearly any approximation (o an equivalent
rectangular bandwidth for a roex(p,r) filter must.
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Thirdly, one can report p values directly, although the meaning of such
numbers is obscure to the uninitiated. Finally, one can calculate 3-dB bandwidths
(as has been done, for example, by Glasberg, Moore & Nimmo-Smith, 1984).
This has the advantage of characterizing the properties of the auditory filter in its
main passband, something which a true equivalent rectangular bandwidl_h does
not. For the roex(p) filter, the 3-dB bandwidith (BW3,45) may be derived as
follows. Becausc a 3-dB change is equivalent 1o a reduction in intensity of a
factor of 2, we first solve for g34p in:

(14pgagp) €M = 0.5 (30)

where g34p represcnts the normalized upper frequency limit of the 3-dB passband

of the filter.
As of gygg and p always enter equation (30) as a product, and never
separately, this is equivalent 10 solving the following equation for x:

(1+x)e’*-05 =0 . (3N

As such an equation cannot be solved in closed form, we use instcad a numerical
root-finding algorithm to find that x = 1.6783. Clearly then:

PBygp = 1.6783 , 32)
or:
Byp = 1.6783 . 33)
p

The value of g4y is converted back into frequency using equation (6). This fygy
will then represent the frequency value at which the filier is 3 dB down from its
peak on the upper frequency side. In order to calculate 3-dB bandwidth, f, must
be subtracted from it, and this then needs to be multiplied by 2:

BW 5 = 265 g3gp (34) (34
Finally, substituting (33) into (34) gives:
BW,p=3.3571, . (35)
p

Recall however, that ‘"o/p is an approximation to the equivalent rectangular
bandwidth for a roex(p) filter. As both BWyg. anong and BWy4q are propor-
tional to l/p. they are clearly proportional to one another, with BWgg.wpong
being about 20% larger than BWy4g. Figure 4 shows how the three measures of
bandwidth vary as a function of p for a roex(p) filter.
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of relative
bandwidth for the
roex(p) model,
each as a function
of p. The upper
(dashed) line gives
the BWep . waone-
while the lower
(dotted) line gives
3.dB bandwidth.
The middle (solid
line) gives
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Using 3-dB bandwidths has two slight drawbacks. Firstly, as argued in the
previous section, g should not be allowed 10 become greater than 1. Thus, for a
roex(p) filter, this limits the calculation of a 3-dB bandwidth 10 filters with
p 2 1.678. Secondly, numerical root-finding algorithms are necessary 10
calculate 3-dB bandwidihs, albeit very simple ones. The advantages, however, are
many. The concept is the most commionly-used one for characterizing filters, and
is applicable to all members of the roex family (in fact, all filiers that are not too
wide). For the roex(p.r) filter, r will have little effect on the 3-dB bandwidth as
long as it is small enough. Tt will therefore reflect selectivity primarily in the
central pass band. For these reasons, it is recommended that experimenters report
both the estimated parameters and 3-dB bandwidth, discontinuing use of BWgy

as it has most frequently been used for filter shapes to which it is inapplicable.

5. Summary

It has been shown that the formulae given by Patterson and Moore (1986) for
fitting detection thresholds to roex filter shapes, and for calculating equivalent
rectangular bandwidths are in error. The effect of these errors is small for the vast
majority of studies on normal hearing listeners but may be serious for studies with
hearing-impaired listeners, or moderalely serious for normal listeners in the low-
frequency range. Errors in estimation can be completely avoided by the use of
appropriate limits of intcgration in derivations, limits which represent the
frequency extent of the notched noise. The resulting formulae arc only marginally
more complex than the simplified approximate ones, and represent a trivial
increase in programming and computing time. Limitations in the use of
equivalent rectangular bandwidth have been pointed out, and the use of a 3-dB
bandwidih suggested insiead. '

-

203




6. Acknowledgements

I am grateful 1o Brian Glasberg and Brian Moore for allowing me access to their
ariginal computer programs for fitting roex filters to detection thresholds. David
Smith made useful comments on the manuscript and also exercised his typesetting
skills upon it. This work was supported by the Medical Research Council of Great
Britain.

7. References

Fidell, S., Horonjeff, R., Teffeteller, S. and Green, D. (1983). "Effective masking
bandwidihs at low frequencies,” 1. Acoust. Soc, Am. 73, 628-638.

Glasberg, B. R., Moore, B. C. J., and Nimmo-Smith, L. (1984) "Comparison of
auditory filier shapes derived with three different maskers,” J._Acoust. Soc, Am..
76, 419-427,

Houtgast, T. (1974). “Lateral suppression in hearing,” Ph.D. thesis, Vrije
Universiteit van Amsterdam (Academische Pers. B.V., Amsterdam).

Houtgast, T. (1977). "Auditory filter characteristics derived from direct-masking
data and pulsation-threshold data with a rippled-noisc masker," J,_Acoust, Soc,
Am., 62, 409-415.

Moore, B. C. ). and Glasberg, B. R. (1983). "Suggested formulae for calculating
auditory-filier bandwidths and excitation pauerns,” J_Acoust, Soc, Am., 74, 750-
753.

Patterson, R. D. (1976). "Auditory filter shapes derived with noise stimuli,” ],
Acoust, Soc, Am. 59, 640-654.

Patterson, R.D. and Moore, B.C.J. (1986). “Auditory fillers and excitation patterns
as representations of frequency resolution,” in Frequency Selectiviry in Hearing,
edited by B.C.J. Moore (Academic Press, London).

Pick, G. F. (1980). "Level dependence of psychophysical frequency resolution and
auditory filter shape,” J,_Acoust. Soc, Am. 68, 1085-1095.

Rosen, S. and Stock, D. (1989) *“Auditory filler bandwidths as a function of level
at low (125 Hz-1 kHz, frequencies: A preliminary report” Speech, Hearing and
Language: Work in Progress 3, 205 - 216.

SAS Institute Inc. (1987) SAS/STAT™ Guide for Personal Computers, Version 6
Edition (SAS Institule Inc., Cary, North Carolina).

Zwicker, E. (1974). "On a psychoacoustical equivalent of tuning curves,” in Facts
and models in hearing, edited by E. Zwicker and E. Terhardt (Springer-Verlag,
Berlin).




Note: These corrections have already been inserted into the text in the appropriate places.

ERRATA FOR:
DERIVING AUDITORY FILTER CHARACTERISTICS FROM
NOTCHED-NOISE MASKING DATA:
MODIFIED DERIVATIONS
Stuart ROSEN

which appeared in Speech, Hearing and Language: Work in Progress (1989)
Volume 3, pages 189-204.

A number of equations in the above-named paper in the last progress report were
unfortunately found to be in error. The correct equations follow.

pge. 195:
P =2k N,f, I ROEX(g) dg (12)
Enw
pg. 199:

Pg=KNofop [2(2+pgy,) e Pom (24pg,,) e PBo_(24+pgy) P8 | (24)

pg. 200:
= -Cpe? 00 (28)
4-(24p)e?
pg. 201:;
BWrramop = 2fo [p! (1-1)(2-(24p) e P)-r]  (9)
pg.202

BW, s =2f0 85 (34)
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