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DERIVING AUDITORY FILTER CHARACTERISTICS FROM 
NOTCHED-NOISE MASKING DATA: 

MODIFIED DERIVATIONS 

Stuart ROSEN 

A bstract 

The notched-noise masking technique and associated methods of analysis have 
seen wide use in the study of auditory frequency selectivity. Unfonunately, 
formulae given in the literature for the prediction of detection thresholds for roex 
filter shapes, and for the calculation of equivalent rectangular bandwidths are in 
en-or. The effect of these errors is small for the vast majority of studies on 
normally hearing listeners but may be serious for studies with hearing-impaired 
listeners. The errors can be avoided by the use of appropriate limits of integration, 
as shown in the new derivations given here. It is also shown that the use of 
equivalent rectangular bandwidth as a summary measure of filter sharpness is 
often inappropriate (as it is not applicable to a filter shape that is frequently used), 
and alternatives are suggested. 

1. Introduction 

The idea that the auditory system performs a kind of frequency analysis on 
incoming sounds, and thus may be likened to a filter bank, has long been a 
mainstay of auditory theory. Only relatively recently, however, have there been 
significant advances made in psychoacoustical methods for determining the 
shapes of these "auditory filters". Although a variety of experimental techniques 
has been proposed (e.g., Houtgast, 1974, 1977; Pick. 1980; Zwicker, 1974), the 
notched-noise masking method and analysis procedure introduced by Patterson 
and his colleagues has had, perhaps, the most extensive development. It has been 
used to: investigate changes of auditory filter bandwidth and shape with changes 
in frequency and level; explain the discrepancies and similarities among auditory 
filter bandwidths estimated from various methods (e.g., critical ratios, 
psychophysical tuning curves, and notched-noise masking studies); and, 
characterise the effects of aging and hearing impairment on auditory filter shapes 
(see Patterson & Moore, 1986, and references therein). 

The basic procedure for a notched-noise experiment is straightforward. In the 
simplest and most common case, the threshold for a sinusoidal probe tone of fixed 
frequency is determined in the presence of a number of relatively wide-band noise 
maskers. Typically, the noise bands are of constant spectral level and have a 
spectral notch centred on the probe frequency. One noise band without a notch is 
also used. Thresholds for the probe lone arc thin plotted as a function of notch 
width. Although there are a number of variations on this basic design (e.g., the 
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The basic procedure for a notched-noise experiment is straightforward In the 
simplest and most common case, the threshold for a sinusoidal probe tone of fixed 
frequency is determined in the presence of a number of relatively wide-band noise 
maskers. Typically, the noise bands arc of constant spectral level and have a 
spectral notch centred on the probe frequency. One noise band without a notch is 

Although there arc a number of variations on this basic design (c.g the 
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level of the probe tone can be fixed and the level of the noise varied so as to just 
mask the probe, the probe can be placed asymmetrically in the spectral notch), 

only this fundamental case will be discussed. 
Much of the power of the notched-noise technique lies in the procedures 

developed for the analysis of the resulting data. These rely on the 
power-

spectrurn model of masking 
and a family of filter shapes with which it is possible 

to derive a relatively small number of meaningful parameters that describe the 
empirical data reasonably well. Unfortunately, there are a number of errors in the 
published derivations of these models which can lead to errors in the estimated 
parameters, especially when applied to data from hearing-impaired listeners. 

2. A tutorial example 

Let us consider an imaginary, but fairly typical, notched-noise experiment. The 
sinusoidal probe is fixed at 1 kHz and the wide-band noise masker has a spectrum 
level of 60 dB SPL/liz and extends from 0.2 kHz to 1.8 kHz. Thresholds for the 
probe are determined for notch widths of 800, 600. 400, 200 and 0 Hz (the no-
notch condition). One possible outcome (only likely from a listener with a 
significant hearing loss at I kHz) is shown in Figure I. Probe threshold decreases 
slightly as the notch widens with a change of 3 dB from the no-notch condition to 
the widest notch. Using the procedures detailed in Patterson and Moore (1986). 
the so-called roex(p) model is fit to the data. This is the simplest filter shape of 
the roex family with two independent variable parameters: (1) k, a measure of 

efficiency, and (2) p, a measure of selectivity. Larger p's indicate greater 
selectivity, hence narrower bandwidths. A completely flat (infinitely wide) filter 
would be indicated by a p value of 0. The results of this analysis indicate that a 
roex(p) filter with p = 2.85 fits the data (as shown by the solid line in Figure 1). 

Figure 1. Data 
from a hypothetical 
notched-noise experi-
ment (filled circles) 
and the fit to the data 
by a roex(p) model 
(solid line), using the 
formulae provided by 
Patterson and Moore 
(1986). 

0 	100 	200 	300 

notch width (Hz) 

In short, the analysis procedure claims that this particular listener has some (if 
severely degraded t) selectivity. Consider, however, what result we would 
expect for a listener with no selectivity whatsoever - that is, with an auditory filter 
that is completely flat. Because the masking bands of noise have fixed edges (as 
is commonly, although not uniformly, done), the amount of energy In the noise 
must necessarily decrease as notch width increases. Therefore if the main 
assumption of the power spectrum model of masking holds (that the detectability 
of the probe is determined completely by the signal-to-noise ratio at the output of 
the auditory filler), then even a listener with no measurable selectivity will show 
thresholds that decrease with increasing notch width. For example, since the 
noise band here was assumed to be 1.6 kHz wide, then the widest notch of 0.8 kHz 
will remove half of the energy in the noise, a drop of 3 dB. In fact, the data in this 
example were generated by a correct roex(p) model with p set to 0 (that is, an 
infinitely wide auditory filter). 

In the next section, I develop the power spectrum model for the roex family of 
filter shapes so as to generate correct estimates of p for all sets of data. It will be 
shown that the error in estimation here (and the published derivations this model 
fitting was based on) arises from the use of incorrect limits of integration. For the 
same reason, a formula given in the literature for the calculation of equivalent 
rectangular bandwidth is in error. Fortunately, these errors arc only serious when 
selectivity is severely degraded in comparison to what is typically found in 
normally-hearing listeners. 

3. The power-spectrum model of masking for roex fillers 

The power-spectrum model of masking, especially as applied to roex filters, 
has appeared in a number of articles in slightly varying form. Here, we will 
generally follow the derivation reported in Patterson and Moore (1986) which 
presents a review and distillation of the previous work. 

In its most general form, the power-spectrum model of masking may be written as: 

Ps  = k f N(1)W(0 df , 	 (I) 

0 

where P, is the threshold of the probe tone (in power units), N(f) is the power 
spectrum level of the noise as a function of frequency r, W(f) is a weighting 
function representing the squared magnitude of the auditory filter's transfer 
function, and k is a constant representing the efficiency of the detection process 
following auditory filtering. 

For notched-noise maskers, which can always be thought of as consisting of 
two bands of noise, N(f) has a constant value of No  over certain frequency limits, 
and is 0 otherwise. Also, as we are assuming that the notch edges are equa-distant 
from the probe at frequency r, , we need only concern ourselves with equations of 
the form: 
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'Young adult normal listeners would typically exhibit p values of about 15 in this condition. 
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In short, the analysis procedure claims that this particular listener has some (if 

severely degraded') selectivity. Consider, however, what result we would 
expect for a listener with no selectivity whatsoever - that is, with an auditory filter 

that is completely flat. Because the masking bands of noise have fixed edges (as 
is commonly, although not uniformly, done), the amount of energy in the noise 

must necessarily decrease as notch width increases. Therefore if the main 

assumption of the power spectrum model of masking holds (that the dctectability 

of the probe is detennined completely by the signal lo-noise ratio at the output of 

the auditory filler), then even a listener with no measurable selectivity will show 

thresholds that decrease with increasing notch width. For example, since ihe 
noise band here was assumed to be 1.6 kHz wide, then the widest notch of 0.8 kHz 

will remove half of the energy in the noise, a drop of 3 dB. In fact, the data in this 

example were generated by a correct rocx(p) model with p set to 0 (that is, an 
infinitely wide auditory filter). 

In the next section, I develop the power spectrum model for the roex family of 

filter shapes so as to generate correct estimates of p for all sets of data. It will be 

shown that the error in estimation here (and the published derivations this model 

fitting was based on) arises from the use of incorrect limits of integration. For ihc 

same reason, a formula given in the literature for the calculation of equivalent 

rectangular bandwidth is in error. Fortunately, these errors arc only serious when 

selectivity is severely degraded in comparison to what is typically found in 
normally-hearing listeners. 

3. The power-spectrum model of masking for roex filters 

The power-spectrum model of masking, especially as applied to rocx filters, 

has appeared in a number of articles in slightly varying form. Here, we will 

generally follow the derivation reported in Patterson and Moore (1986) which 
presents a review and distillation of the previous work. 

In its most general form, the power-spectrum model of masking may be written 
as: 

ps= N(DW(f)df, (1) 

where Ps is the threshold of the probe tone (in power units), N(f) is the power 

spectrum level of the noise as a function of frequency f, W(f) is a weighting 

function representing the squared magnitude of the auditory filters transfer 

function, and k is a constant representing the efficiency of the detection process 
following auditory filtering. 

For notched-noise maskers, which can always be thought of as consisting of 
two bands of noise, N(f) has a constant value of No over certain frequency limits, 

and is 0 otherwise. Also, as we are assuming that the notch edges are equa-distant 

from the probe ai frequency f0, we need only concern ourselves with equations of 
the form: 

1 Young aduli normal listeners would typically exhibit p values of aboul 15 in this condition. 

193 

192 



I. 

10-nw/2 	 rtti 

Ps  =k No f W(f) df + k No  W(0 df , 	 (2) 

ft o 	 fenw/2 

where the first term on the right hand side (RHS) accounts for the lower band of 
the masking noise, and the second term accounts for the upper band. The extreme 

frequency limits of the masker are represented by flo  and fhb while nw represents 

the total notch width. For the no-notch condition, the upper limit of the first 

integral and the lower limit of the second are both set to fo  by letting nw = 0. 

The shapes of the roex family of fillers are more conveniently described in 
terms of a variable known as g, rather than directly in frequency, where: 

g = If-fo1/10 	 (3) 

Note that fa  is the frequency of the probe, and hence the centre frequency (cf) of 

the auditory filter under consideration. Thus g is the distance in frequency from 

the filter cf, normalized by the cf. 
For the first integral on the RHS of (2), f 5 1, whereas for the second integral, 

f 	fo. Therefore, we can avoid the use of the absolute value operator by 

rewriting (2) as:  

Therefore, (4) becomes: 

gITSV 	 gig 

Ps  = -k No  fo f ROEX(g) dg + k No  fo f ROEX(g) dg , 	(10) 

gt 0 	 grtw 

where g10  and gm  are the extreme frequency limits of the masker now expressed 

in terms of g, and gn„, = nw/2 I... the transformed notch width. For frequencies 

that are less than 1, (first integral on the RHS of equation 10), the transformation 

to g is monotone decreasing. Therefore, as fro  a fo  - nw/2 (in order for there to 

be a band of noise below the notch at all), so gl, > g0„,. Since the noise power is 

positive, so too must the integral be positive, representing the power of the lower 
noise band passed by the filter. This accounts for the negative sign preceding the 
first integral. For ease of reading, we can simply reverse the limits of that 
integral, changing the minus sign to a positive one to obtain: 

gio 	 gni 

Ps  = k No  fo f ROEX(g) dg + k No  fo  fROEX(g)dg 

gnw 	 grtve 

f0-nw/2 	 ftt 

Ps k Nof ROEX((f,-1)/1-0) df + k NJ ROEX(  .(140)/f) df (4) 

fr o 	 fo+ /2 

convert the variable of integration to g, we note again that for f > fo  as in the 
where ROEX() is one of the roex family of filters substituting for W(f). To 

second integral 01(4): 

(5)  g = (f-  f 0)/r. , 

(6)  fo = g + 10 . 

and taking derivatives with respect to g on both sides of (6) that: 

	

di-Mg  = d (fog 440)/dg  = 10  , 	 (7) 

so that: 	
(8) df = dg. 

Similarly, when f < fo, it is easy to sec that: 

(9) df = - fo  dg. 

This is the most general expression that can be obtained for the roex family of 
filters under the assumptions of constant noise spectrum level and symmetry of 
notch and probe. In Patterson and Moore's (1986) derivation, fro  = 0 Hz while 
11,1=0-, leading to gi,= 1 and g 	co. This is equivalent to assuming that the 
masker is infinitely wide, extending from 0 Hz upward. Patterson and Moore 
then go on to argue that, as the filter is symmetric in g, the two integrals in 
equation (11) are equal, so that equation (11) may be reduced to: 

Ps =kNo fo  f ROEX(g) dg 
	

(12) 

Bnw 

In fact, it is clear from equation (1 1) that the two integrals are nor equal. 
because gio# ghi•  The error arises because roex filters arc nor strictly 

symmetric, but are only symmetric for the frequency range extending from 0 Hz 
to 210  Ilz. This can be seen most clearly by noting that the upper part of the filter 

shape (1 > I.) extends towards infinity, while the lower part (r < ( 0 ) can only 
extend to 0 Hz and no further, as a filter value for negative frequencies is 
nonsense in this context. Relatively sharp filters go to zero fast enough in both 
directions from 10  so that the two integrals in equation (11) are approximately 

equal, making equation (12) accurate enough for most uses. For shallow filters 
(as typically occur for hearing-impaired listeners), the RIIS of equation (12) 
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= kN0J (2) 

where the first term on the right hand side (RHS) accounts for the lower band of 
the masking noise, and the second term accounts for the upper band. The extreme 
frequency limits of the masker are represented by f,0 and fhl. while nw represents 

the total notch width. For the no-notch condition, the upper limit of the first 
integral and the lower limit of the second arc both set to f0 by letting nw = 0. 

The shapes of the roex family of filters are more conveniently described in 
terms of a variable known as g, rather than directly in frequency, where: 

(3) 

Note that f0 is the frequency of the probe, and hence the centre frequency (cf) of 
the auditory filter under consideration. Thus g is the distance in frequency from 

the filter cf, normalized by the cf. ... 
For the first integral on the RHS of (2). f < f0 whereas for the second mtegral, 

f 2 fo. Therefore, we can avoid the use of the absolute value operator by 

rewriting (2) as: 

= kNoJ 
fo-nw/2 

lo 

ROEXCCf-foVf^df, (4) 

fo+nw/2 

where ROEX() is one of the roex family of filters substituting for W(f). To 
convert the variable of integration to g. we note again that for f > (0 as in the 

second integral of (4): 

fo = fo* + fo. (6) 

and taking derivatives with respect to g on both sides of (6) that: 

df/dg = d(fog+fo)/dg = fo , 0) 

so lhat: 

df«fodg. (« 

Similarly, when f < f0, it is easy to sec that: 

df= - fodg. W 
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Therefore, (4) becomes: 

's = k No fo J ROEX(g) dg + Ic No fo J ROEX(g) dg , (10) 

glo Bnw 

where g|0 and ghi are the extreme frequency limits of the masker now expressed 

in terms of g, and gnw = nw/2f , the transformed notch width. For frequencies 

that arc less lhan f0 (first integral on the RHS of equation 10), (he transformation 

to g is monotone decreasing. Therefore, as Fj0 < f0 - nw/] (in order for there to 

be a band of noise below the notch at all), so gj0 > gnw. Since the noise power is 

positive, so loo must the integral be positive, representing the power of the lower 

noise band passed by the filter. This accounts for the negative sign preceding the 

first integral. For ease of reading, we can simply reverse the limits of that 

integral, changing the minus sign to a positive one to obtain: 

- 8io ^ 6hi 

= k No f0 J ROEX(g) dg + k No f0 J ROEX(g) dg . (11) 

Snw 

This is the most general expression that can be obtained for the roex family of 

filters under the assumptions of constant noise spectrum level and symmetry of 

notch and probe. In Paiterson and Moore's (1986) derivation, f,0 = 0 Hz while 

fhi=°°. leading to g]0=l and ghj=°°- This is equivalent to assuming that the 

masker is infinitely wide, extending from 0 Hz upward. Patterson and Moore 

then go on to argue that, as the filter is symmetric in g, the two integrals in 

equation (11) are equal, so that equation (11) may be reduced to: 

= kNofoJ ROEX(g) dg (12) 

Env 

In fact, it is clear from equation (11) that the two integrals are not equal, 

because gj0 * ghJ. The error arises because roex filters arc not strictly 

symmetric, but are only symmetric for the frequency range extending from 0 Hz 

to 2f0 Hz. This can be seen most clearly by noting that the upper part of the filler 

shape (f > f0) extends towards infinity, while the lower part (f < f0) can only 

extend to 0 Hz and no further, as a filter value for negative frequencies is 

nonsense in this context. Relatively sharp filters go to zero fast enough in both 

directions from f0 so that the two integrals in equation (11) arc approximately 

equal, making equation (12) accurate enough Cor most uses. For shallow filters 

(as typically occur for hearing-impaired listeners), the RHS of equation (12) 
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approximates the RI IS of equation (11) rather poorly. 
The two integrals in equation (11) can be made equal for appropriate 

integration limits. As implied above, if gli, = gbi, then equations (11) and (I2) 
gm  equivalent (substituting ghi for the upper limit of the integral in (12)). This 
condition obtains nearly universally in published empirical studies, and simply 
indicates that the upper and lower limits of the masker are equa-distant from the 
probe. In order to demonstrate more clearly the effects of these various assumptions, 
we shall now assume use of the simplest member of the melt family, the so-called 
roex(p) model defined by: 

roex(p) = (1+pg) 	. 	(13) 
Calculating  the indefinite integral gives: 

( I +pg) 043 dg  = -p- I (2+pg) e-Pg 	(14) 

To obtain the predictions of the roex(p) model according  to Patterson and Moore, 
we substitute this expression into (12), to obtain: 

Ps i -(2k No  fo  Q I )(2+Pg) a Pg I 	• 
gDW 

Finally, noting  that: 
(2+pg) e-P8  = 0 , 

g .> DO 

Ps  = 2k No  10  p-1(2+Pgriw) Cm" 

This is the (incorrect) equation Patterson and Moore give in order to predict the 
threshold of the probe (in power terms) for a particular notch width. For the case 
g to = ghi, the use of the appropriate limits of integration makes (12) become: 

ghi 
Ps  = -(2k NO  fo p- I )(24-pg) e-Pg 	. 	(18) 

gnw 
and: 

PS  = 2k No  fo  p-1  [(24-pg,f,‘„) 	- (2-FpgN) e-Pghl J  . 	(19) 
There is thus an extra term in the equation compared to that given by Patterson 
and Moore. Because this extra term is always positive, the incorrect formula will 
always predict a threshold greater.than the correct one. 

The magnitude of the error introduced by the use of equation (17) instead of 
equation (19) can be examined by looking  at the difference (in dB) between the 
two predictions: 

Error = 10log(Ps _coreeet ) - 10log(Ps.„,,ong) 

= 101og(ps _comtcdp s.wloog)  
where, after cancellation of appropriate terms: 

Ps-correct/Ps. 	g = (2+pgme) e-Pg”. (2+pg  ) 
(2+pgme) 
(2+pgts ) 

(2+pgm,) CM*. 
Assuming gm  = 0.8 (representative of the values typically used in notched-

noise studies), the error as given by equations (20)-(23) was calculated for gee, 
between 0.0 and 0.4 inclusively. For p 2 5, the maximum error magnitude was always less than 1 dB, decreasing  with increasing  p. For a fixed p, the magnitude of the error increases with grne. For example, with p = 3, the magnitude of the 
error at gr.,. = 0.0 was just under 1 dB, while at gew  = 0.4. it was 2.3 dB. It 
thus appears that errors will be small as long  as auditory filtering  is reasonably narrow band (as indicated by a moderately high p value). As normal listeners display auditory filtering  consistent with p of at least 7 (occurring  at the lowest frequency tested of 125 Hz - Fidell, Horonjeff, Teffeteller & Green, 1983; Rosen & Stock, 1989), the error is inconsequential for studies of normal hearing, being  less than the typical variability in measured thresholds. Note however, that lowering  the value of gm  will cause greater errors. 

In most applications of the roex(p) model, however, the value of p is estimated 
from a known set of masked thresholds. Two ways were used to determine the 
errors in estimating  p arising  from use of the the incorrect formula. 

Firstly, the correct roex(p) formula (equation 19) was used to generate a set of masked thresholds (in dB) for 0 5 p 5 20, k = .5 (101ogk = -3.0 dB) and gess  equal to 0.0, 0.1, 0.2, 0.3 and 0.4 (a reasonable set to use in notched-noise experiments). Then, for each synthesized data set (from a single value of p), a minimization routine was used to estimate values of p and 10logk (symbolized as pest  and 10logk es1) that best predicted the data using  the incorrect  formula 
(equation 17)2. For both parameters, the magnitude of the error decreased with increases in p, with 10logk est  never being  further from 10logk than 0.65 dB. 
The value of pest  could be far from p however, as has already been seen in a 
previous section. Figure 2 shows for 0 S p 5 15 the relationship between p and pest. As noted earlier, the error is greatest for low p values. A true p of 1, for 

2As recommended by Patterson and Moore (1986), all model fits were on the basis of values expressed in dB. Therefore, equations (17) and (19) were converted by taking  logarithms (to the base 10) and multiplying  by 10. The fitting  procedure was implemented using  the SAS procedure NL1N which uses a least-squares criterion for minimization. In order to avoid the calculation of partial derivatives, the multivariate secant technique (also known as false position)  was used. For further details see the SAS/STAT Guide for Personal Computers 1987. 
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approximates the RMS of equation (11) rather poorly. 
The two integrals in equation (11) can be made equal for appropriate 

integration limits. As implied above, if g,0 = gbi- »"cn equations (11) and (12) 
ajs equivalent (substituting ghi for The upper limit of the integral in (12)). This 
condition obtains nearly universally in published empirical studies, and simply 
indicates that the upper and lower limits of the masker arc cqua-distant from the 

probe. 
In order to demonstrate more clearly the effects of these various assumptions, 

we shall now assume use of the simplest member of the rocx family, the so-called 

roex(p) model defined by: 

Pg . (13) 

(14) 

To obtain the predictions of the rocx(p) model according lo Patterson and Moore, 

we substitute this expression into (12), lo obtain: 

Calculating the indefinite integral gives: 

J 

P,= -(2kNof0p-l)(2+pg)e-PS 

Finally, noting thai: 

lilTi (2+pg)e"P8 = 0 

PS = 

(15) 

(16) 

(17) 

This is the (incorrect) equation Patterson and Moore give in order to predict the 
threshold of the probe (in power terms) for a particular notch width. For the case 

g, = ghl, the use of ihe appropriate limits of integration makes (12) become: 

Ps= -(2kNofopl)(2+pg)ePg 
Shi 

and: 

Ps = 2k N '1 [(2+pgnw)e-»- - (2+pgK) 

(18) 

(19) 

There is thus an extra term in the equation compared to that given by Patterson 
and Moore. Because this extra term is always positive, the incorrect formula will 

always predict a threshold greaterihan the correct one. 

The magnitude of the error introduced by the use of equation (17) instead of 
equation (19) can be examined by looking at the difference (in dO) between the 

two predictions: 
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Error = 10log(PI<omcl) - 10log(Ps.wrong) s.wrong 

where, afier cancellation of appropriate terms: 

Ps«omxl/P s.wrong 

1 -

(20) 

(21) 

(22) 

(23) 

(2+pgnw)e-re-

Assuming gh| = 0.8 (representative of the values typically used in notched-

noise studies), the error as given by equations (20M23) was calculated for gBW 

between 0.0 and 0.4 inclusively. For p > 5, the maximum error magnitude was 

always less than 1 dB, decreasing with increasing p. For a fixed p, the magnitude 

of the error increases with gnw. For example, with p = 3, the magnitude of the 

error at gBW = 0.0 was just under 1 dB, while at gBW = 0.4. it was 2.3 dB. It 

thus appears that errors will be small as long as auditory filtering is reasonably 

narrow band (as indicated by a moderately high p value). As normal listeners 

display auditory filtering consistent with p of at least 7 (occurring at the lowest 

frequency tested of 125 Hz • Fidell, Horonjeff, Tcffctcllcr & Green, 1983; Rosen 

& Slock, 1989), the error is inconsequential for studies of normal hearing, being 

less than the typical variability in measured thresholds. Note however, thai 

lowering the value of gh, will cause greater errors. 

In most applications of the roex(p) model, however, the value of p is estimated 

from a known set of masked thresholds. Two ways were used to determine the 

errors in estimating p arising from use of the the incorrect formula. 

Firstly, the correct rocx(p) formula (equation 19) was used to generate a set of 

masked thresholds (in dB) for 0 S p < 20, k = .5 (lOlogk = -3.0 dB) and g 

equal to 0.0, 0.1, 0.2, 0.3 and 0.4 (a reasonable set to use in notched-noise 

experiments). Then, for each synthesized data set (from a single value of p), a 

minimization routine was used to estimate values of p and lOlogk (symbolized as 

pes, and 10logkt$|) that best predicted the data using the incorrect formula 

(equation 17)2. For both parameters, the magnitude of the error decreased with 
increases in p, with 10logke$, never being further from lOlogk than 0.65 dB. 

The value of ptJ, could be far from p however, as has already been seen in a 

previous section. Figure 2 shows for 0 £ p £ IS the relationship between p and 

pMl. As noted earlier, the error is greatest for low p values. A tme p of 1, for 

2As recommended by Patterson and Moore (1986). all model fits were en the basis of values 
expressed in dB. Therefore, equations (17) and (19) were convened by taking logarithms (to the 

base 10) and multiplying by 10. The fitting procedure was implemented using ihe SAS procedure 

NLIN which uses a least-squares criterion for minimization. In order to avoid the calculation of 

partial derivatives, the multivariate secant technique (also known as false position) was used. For 

further details sec the SAS/STAT Guide for Personal Computers 1987. 
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unlikely to reach even a few per cent. 
So far, we have only developed formulae for the case gio  = ghi. In the most 

general case, g10 is ghi, and predictions from the roex(p) model are given by: 

instance leads to a p is, of 3.06, a percentage error of over 200%. As long as 

p a 5, the percentage error is less than 10%, and becomes less than 1% for 

p > 9.6. At p values near 20, the error in p is less than .005%, and on the order 
of 0.0005 dB for 10logk. Again, this suggests that the error is relatively 
inconsequential for normal listeners (where p is almost always greater than 7), but 

could be serious for hearing-impaired ones. 

Thus, equation (19) can be seen to be a special cast of this more general equation. 
Other roex filter shapes have been defined. The most complex, the so-called 

roex(p,w,t) model consists of two rounded exponentials, one of which dominates 
in the centre of the passband of the filter, and one of which dominates towards the 
filter tails. Patterson and Moore's (1986) derivation for this model contains the 
same error as detailed for the roex(p) model, and the correct derivation would 
follow the same line as given above. As the rocx(p,w,l) model has not seen much 
use (few experiments have the number of data points needed to tightly constrain a 
model with four free parameters, nor sufficient range to define the filter tails), we 
omit the correct formula here. However, it is as well to note that since the tails of 
the filter in this model are typically much shallower than the falloff in the 
passband, the errors caused by the use of the incorrect formula will be 
correspondingly greater. 

Finally, much use has been made of the so-called roex(p,r) model, given by: 

16 

S 14 

Figure 2. The 
relationship between 
the true p used to 
generate a synthetic 
data set and the p 
estimated on the basis 
of an incorrect 
formula, both based 
on a roex(p) filter 
shape (solid line). The 
dashed line shows 
what would be 
expected if there was 
DO error in estimation. 
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Secondly, a set of data from normal listeners was analyzed using both the 
correct and the incorrect formula, in order to estimate the magnitude of errors that 
might arise in considering genuine data. The analyzed data came from a study of 
low-frequency selectivity by Rosen and Stock (1989). Five normal listeners were 
tested at four probe frequencies (125, 250, 500 and 1000 Hz) and four noise levels 
(40 to 70 dB SPL/liz in 10 dB steps) at five symmetric notch widths (0.0, 0.1, 0.2, 
0.3 and 0.4). The bands of noise were constructed such that g ill was 0.72 for 

probes at 125 Hz and 0.8 otherwise. Data sets were selected so as to have low p 
values, with a few high p sets for comparison. As expected, nearly all of the 
lowest p data sets were for probe frequencies of 125 Ilz (the sole exception being 
at 250 Hz). In agreement with the conclusions derived from synthetic data, errors 
in p were more serious than errors in 101ogk. Values of 10Iogk estimated 
correctly were, with one exception, within 0.3 dB of the values of 10logk 
estimated by use of the incorrect formula. Maximum percentage errors in p were 

about 5-7%, for data that was fit with correct p values near 7. One set of data, 
because it indicated a fairly low degree of selectivity, led to much greater errors, 
with an incorrect p of 3.4, and a correct one of 0.7, a percentage error of 386%. 
The error in k, too, was greater than for the other data sets but still only about 0.8 
dB. Although this data set may not in fact be representative of the selectivity 
typically displayed by normal listeners, it is a warning that using the wrong 
integration limits can lead to serious errors, even in normal listeners (at least at 
low frequencies). For impaired listeners, the errors may be very serious. For 
normal listeners with probe frequencies at 250 Hz and above, the error in p is 
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roex(p,r) = ( 1 - ( 1 +pg) a Pg + r . 	 (25) 

This is simply the roex(p) shape with an additive constant and scaling factor to 
keep its value equal to unity at its centre frequency. Errors in using this model are 
likely to be much less severe than in the other two models because some 
integration limit less than infinity has to be used in order to keep the integral in 
equation (12) bounded. Patterson and Moore suggest setting gm  = 0.8, a value 
in keeping with what experimenters have typically used. It seems more sensible 
simply to use the integration limits appropriate to a particular experiment, rather 
than setting an arbitrary value. It is easy to imagine situations in which ghl could 
be greater or smaller than 0.8. 3  

Finally, it is well to note that the error of assuming unbounded filter symmetry 
in derivations for masking studies has not only been confined to roex filters and 
notched-noise experiments. Glasberg, Moore and Nimmo-Smith (1984) for 
example, make the same error in deriving predictions for rippled-noise maskers 
and Gaussian filters. As that study investigated the selectivity of normal listeners 
at 1 kHz and low levels, however (where p is typically about 25), it is unlikely 
that the error in derivations would be important. 

3In the model fits used here, the experimental procedure was such that g„ and god  were not 
only equal, but constant over notch widths. Such a situation arises when a single band-pass noise 
is modulated by a sinusoid at f 0  in order to create the notched noise (e.g., as used by Weber, 1977; 
Rosen & Stock, 1989). In other paradigms, two separate low-pass bands of noise arc modulated 
independently to create the notched noise (e.g., Patterson 1976), making gio  and g hi vary with 
notch width. In that case too, the true limits of the noise should be used as the integration limits, a 
task which requires little extra programming work. 
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instance leads to a P(J| of 3.06, a percentage error of over 200%. As long as 

p > 5, the percentage error is less than 10%, and becomes less than 1% for 
p>9.6. At p values near 20, the error in p is less than .005%, and on the order 

of 0.0005 dB for lOlogk. Again, this suggests that the error is relatively 
inconsequential for normal listeners (where p is almost always greater than 7). but 

could be serious for hearing-impaired ones. 
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Secondly, a set of data from normal listeners was analyzed using both the 
correct and the incorrect formula, in order to estimate the magnitude of errors that 
might arise in considering genuine data. The analyzed data came from a study of 
low frequency selectivity by Rosen and Stock (1989). Five normal listeners were 
tested at four probe frequencies (125, 250, 500 and 1000 Hz) and four noise levels 
(40 to 70 dB SPIVH* in 10 dB steps) at five symmetric notch widths (0.0, 0.1, 0.2, 
0.3 and 0.4). The bands of noise were constructed such that gb, was 0.72 for 

probes at 125 Hz and 0.8 otherwise. Data sets were selected so as to have low p 
values, with a few high p sets for comparison. As expected, nearly all of the 
lowest p data sets were for probe frequencies of 125 Hz (the sole exception being 
at 250 Hz). In agreement with the conclusions derived from synthetic data, errors 

in p were more serious than errors in lOlogk. Values of lOlogk estimated 
correctly were, with one exception, within 0.3 dB of the values of lOlogk 
estimated by r.sc of the incorrect formula. Maximum percentage errors in p were 
about 5-7%, for daw that was fit with correct p values near 7. One set of data, 

. because it indicated a fairly low degTce of selectivity, led to much greater errors, 

with an incorrect p of 3.4, and a correct one of 0.7, a percentage error of 386%. 
The error in k, too, was greater than for the other data sets but still only about 0.8 
dB. Although this data set may not in fact be representative of the selectivity 
typically displayed by normal listeners, it is a warning that using the wrong 
integration limits can lead to serious errors, even in normal listeners (at least at 

low frequencies). For impaired listeners, the errors may be very serious. For 
normal listeners with probe frequencies at 250 Hz and above, the error in p is 
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unlikely to reach even a few per cent. 

So far, we have only developed formulae for the case g,o = gb|. In the most 

general case, g,0 * gnj, and predictions from the roex(p) model are given by: 

Ps=2kNofop-1[(2+pgnw)e-P&~ - (24) 

Thus, equation (19) can be seen to be a special case of this more general equation. 

Other rocx filter shapes have been defined. The most complex, die so-called 

roex(p,w,t) model consists of two rounded exponentials, one of which dominates 

in the centre of the passband of the filter, and one of which dominates towards the 

filter tails. Patterson and Moore's (1986) derivation for this model contains the 

same error as detailed for the roex(p) model, and the correct derivation would 

follow ihe same line as given above. As the rocx(p,w,l) model has not seen much 

use (few experiments have the number of data points needed to tightly constrain a 

model with four free parameters, nor sufficient range to define the filter tails), we 

omit the correct formula here. However, it is as well to note that since the tails of 

the filter in this model are typically much shallower than the falloff in the 

passband, the errors caused by the use of the incorrect formula will be 

correspondingly greater. 

Finally, much use has been made of the so-called rocx(p.r) model, given by: 

roex(p,r) = (l-r)(l+pg)e'P8 +r . (25) 

This is simply the roex(p) shape with an addiiive constant and scaling factor to 

keep its value equal to unity at its centre frequency. Errors in using this model are 

likely to be much less severe than in the other two models because some 

integration limit less than infinity has to be used in order to keep the integral in 

equation (12) bounded. Patterson and Moore suggest setting ght = 0.8, a value 

in keeping with what experimenters have typically used. It seems more sensible 

simply to use Ihe integration limits appropriate to a particular experiment, rather 

than setting an arbitrary value. It is easy to imagine situations in which gbj could 

be greater or smaller than 0.8.3 

Finally, it is well to note that the error of assuming unbounded filter symmetry 

in derivations for masking studies has not only been confined to roex filters and 

notched-noise experiments. Glasberg, Moore and Nimmo-Smith (1984) for 

example, make the same error in deriving predictions for rippled-noise maskers 

and Gaussian filters. As that study investigated the selectivity of normal listeners 

at 1 kHz and low levels, however (where p is typically about 25), it is unlikely 

that the error in derivations would be important. 

3In ihc model fits used here, the experimental procedure was such that gia and gy were not 
only equal, but constant over notch widths. Such a situation arises when a single band-pass noise 

is modulated by a sinusoid at f, in order to create the notched noise (e.g., as used by Weber. 1977; 

Rosen & Stock, 1989). In other paradigms, two separgtc low-pass bands of noise are modulated 

independently to create the notched noise (e.g., Patterson 1976), making g)0 and ghl vary with 

notch width. In thai case too, the true limits of the noise should be used as the integration limits, a 

task which requires little extra programming work. 
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4. The calculation of a bandwidth parameter 

In reporting results from roex modelling of masking experiments, it is 
relatively rare to see p values alone-directly quoted. Instead, a more generally 
understood measure of bandwidth is typically given, the equivalent rectangular 

bandwidth (BWER - also known as equivalent noise bandwidth). The BWER  of 

any filter is defined as the bandwidth of an ideal bandpass filter (i.e., with cutoffs 
of infinite slope) which would pass the same power of white noise as the original 
filter, assuming the efficiency of transmission for the ideal rectangular filter to be 
equal to the maximal value of the filter under consideration. Because the three 
roex filters have unity gain at their peak: 

BWel  = ROEX(I fo-f I/0 df 

0 
fo  

= f ROEX( ( fo-f )/ro) df + f ROEX(( f-fo )/r) df 

0 	 fo  

1 

= fo  ROEX(g) dg + fo  f ROEX(g) dg . 	(26) 

0 	 0 

(following roughly the same steps as in the previous section, with ft, = 0, 

fb 1  = 00 and nw=0). For the roex(p) filter, this becomes: 

BWER  = 4fo  - fo(2+p) P 	 (27) 

p 	p 

Patterson and Moore (1986) give the BWER  of this filter as 4f0/p . This 

discrepancy arises from the same error discussed in the previous section - that of 
assuming the roex filter is symmetric for unbounded g. The BWER  that Patterson 

and Moore report results from substituting g.. = 0 into equation (12), and then 

taking the integral of the roex(p) filter. Again the error is inconsequential for 
normal selectivity as can be seen by calculating the percentage error between 
these two values: 

%ERROR = (D/A'  ER:CORRECT °W  ER:WRONG)  x 100 
BW ER:CORRECT 

= 	(2+p) e -  P 	x 100 . 
	 (28) 

4 -(2+p) C P 

200 

Figure 3 shows the percentage error as a function of p. For p 2 6, the error is 
less than 1%, but increases sharply with decreasing p, with a 20% error for p 
values just below 2. Again, these errors can be serious for degraded auditory 
filtering. 

Figure 3. The 
percentage error in 
equivalent rectangular 
bandwidth for a —10 
roex(p) 	filter 
calculated by a correct 
and an incorrect 
formula. 
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— 40 

Perhaps more disturbing, equivalent rectangular bandwidths are quoted for roex 
filters which do not have a finite BWER  - to wit, roex(p,r) filters. As noted in the 
previous section, roex(p,r) filters are the sum of a roex(p) filter plus a constant. 
Therefore, their BWERs are infinite. Yet Moore and Glasberg (1983), in 
summarizing the outcomes of 6 studies using roex(p,r) filters, give all their results 
in terms of equivalent rectangular bandwidth. In fact, the BWER used in that 
paper is simply 4f,/p , an approximation to BWER  for roex(p) filters. 

At least four alternatives are available for reporting a measure of bandwidth. 
Firstly, one can continue to quote BWER 's, but in reference to roex(p,r) filters to 
use some sort of circumlocution such as "the equivalent rectangular bandwidth of 
a roex(p) filter with p derived from a roex(p,r) filter". This is perhaps the least 
desirable alternative. Secondly, one can take the route suggested by Patterson and 
Moore for the derivation of thresholds from the roex(p,r) model by setting a finite 
upper integration limit in equation (26). A value of g bt  = gi. = 1, might be 
preferable to ghl  = glo  = 0.8, in that it represents the maximum extent to which 
the roex family of filters is symmetric (gi. = 1 corresponding to a lower 
integration limit of 0 Hz). It can then be shown that this modified equivalent 
rectangular bandwidth is given by: 

BW  ER:MOD = 2fo [ (1-1-  )(2  ( 2+P) P)j . 	(29) 

The advantage of this formula over simply using the BWER  from a roex(p) filter 
is that it depends on r as well as p, as clearly any approximation to an equivalent 
rectangular bandwidth for a roex(p,r) filter must. 
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4. The calculation of a bandwidth parameter 

In reporting results from roex modelling of masking experiments, it is 

relatively rare to see p values alone'directly quoted. Instead, a more generally 
understood measure of bandwidth is typically given, the equivalent rectangular 

bandwidth (BWER - also known as equivalent noise bandwidth). The BWER of 

any filter is defined as the bandwidth of an ideal bandpass filter (i.e., with cutoffs 
of infinite slope) which would pass the same power of white noise as the original 

filter, assuming the efficiency of transmission for the ideal rectangular filter to be 

equal to the maximal value of the filter under consideration. Because the three 

rocx filters have unity gain ai their peak: 

BW^ = J ROEX(lfo-fl/fo)df 
0 

rf° r 
= J ROEX((fo-f)/fo)df+J ROEX((f-fo)/fo)df 

0 

+ foj foj ROEX(g) dg+ foj ROEX(g) dg 
0 0 

(26) 

(following roughly the same steps as in the previous section, with fl0 = 0, 

fhl s «» and nw=0). For the rocx(p) filter, this becomes: 

^ER = 4f0 - fo(2+p)ep (27) 

Patterson and Moore (1986) give the BWFR of this filler as 4fo/p. This 

discrepancy arises from the same error discussed in the previous section - that of 
assuming the roex filter is symmetric for unbounded g. The BWER that Patterson 

and Moore report results from substituting gnw = 0 into equation (12), and then 

taking ihe integral of the rocx(p) filter. Again the error is inconsequential for 

normal selectivity as can be seen by calculating the percentage error between 

these two values: 

%ERROR 
(BW ER:CORRECT - BW ER: WRONG) x 100 

BW ER:CORRECT 

(2+p)eP 

4 -(2+p) t p 

x 100 
(28) 

? 
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Figure 3 shows the percentage error as a function of p. For p 2 6, the error is 

less than 1%, but increases sharply with decreasing p, with a 20% error for p 

values just below 2. Again, these errors can be serious for degraded auditory 

filtering. 
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Perhaps more disturbing, equivalent rectangular bandwidths arc quoted for roex 

filters which do not have a finite BWKR - to wit, roex(p.r) fillers. As noted in the 

previous section, roex(p.r) filters are the sum of a rocx(p) filter plus a constant. 

Therefore, their BWERs arc infinite. Yet Moore and Glasberg (1983), In 

summarizing the outcomes of 6 studies using roex(p.r) fillers, give all their results 

in terms of equivalent rectangular bandwidth. In fact, the BWER used in that 

paper is simply 4fo/p, an approximation to BWFR for roex(p) filters. 

At least four alternatives are available for reporting a measure of bandwidth. 

Firstly, one can continue to quote BWER\s, but in reference to roex(p.r) filters to 

use some son of circumlocution such as "the equivalent rectangular bandwidth of 

a roex(p) filler with p derived from a roex(p/) filter". This is perhaps the least 

desirable alternative. Secondly, one can take the route suggested by Patterson and 

Moore for the derivation of thresholds from the roex(p,r) model by setting a finite 

upper integration limit in equation (26). A value of gb) = g,0 = 1, might be 

preferable to ghJ = glo = 0.8, in lhat it represents the maximum extent to which 

the roex family of fillers is symmetric (glo = 1 corresponding to a lower 

integration limit of 0 Hz). It can (hen be shown lhat this modified equivalent 

rectangular bandwidth is given by: 

BWER:M0D = 2f (l-r)(2-(2+p)eP) (29) 

The advantage of this formula over simply using the BWER from a rocx(p) filter 

is lhat it depends on r as well as p, as clearly any approximation to an equivalent 

rectangular bandwidth for a roex(p.r) filter must. 
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Thirdly, one can report p values directly, although the meaning of such 
numbers is obscure to the uninitiated. Finally, one can calculate 3-dB bandwidths 
(as has been done, for example, by Glasberg, Moore & Nimmo-Smith, 1984). 
This has the advantage of characterizing the properties of the auditory filter in its 
main passband, something which a true equivalent rectangular bandwidth does 
not. For the roex(p) filter, the 3-dB bandwidth (BW 3dB) may be derived as 

follows. Because a 3-dB change is equivalent to a reduction in intensity of a 
factor of 2, we first solve for g3dB  in: 

(l+p g)e-  man = 0.5 , 	 (30) 

where g3dB represents the normalized upper frequency limit of the 3-dB passband 

of the filter. 
As of g 3dB and p always enter equation (30) as a product, and never 

separately, this is equivalent to solving the following equation for x: 

(l+x) e-x  - 0.5 = 0 . 	 (31) 

As such an equation cannot be solved in closed form, we use instead a numerical 
root-finding algorithm to find that x a  1.6783. Clearly then: 

pg,3d, = 1.6783 , 	 (32) 

or : 

g3dB 	.6783 . 	 (33) 

p 

The value of gull is converted back into frequency using equation (6). This 13dB  

will then represent the frequency value at which the filter is 3 dB down from its 
peak on the upper frequency side. In order to calculate 3-dB bandwidth, I-o  must 

be subtracted from it, and this then needs to be multiplied by 2: 

BW3do  = 2fo pg3dB • 	 (34) 

Finally, substituting (33) into (34) gives: 

BW3dB = 3.357 to  . 	 (35) 

p 

Recall however, that 41c,/p  is an approximation to the equivalent rectangular 

bandwidth for a rocx(p) filter. As both BWER:WRONG and BW3dB are propor- 

tional to 1/ they are clearly proportional to one another, with B 
P' 	

-W ER:WRONG 

being about 20% larger than BW3da. Figure 4 shows how the three measures of 

bandwidth vary as a function of p for a roex(p) filter. 

1.5 	 3.0 	 6.0 
	

12.0 

value of p 

Using 3-dB bandwidths has two slight drawbacks. Firstly, as argued in the 
previous section, g should not be allowed to become greater than I. Thus, for a 
roex(p) filter, this limits the calculation of a 3-dB bandwidth to fillers with 
p 2 1.678. Secondly, numerical root-finding algorithms are necessary to 
calculate 3-dB bandwidths, albeit very simple ones. The advantages, however, are 
many. The concept is the most commonly-used one for characterizing filters, and 
is applicable to all members of the roex family (in fact, all filters that arc not too 
wide). For the roex(p,r) filter, r will have little effect on the 3-dB bandwidth as 
long as it is small enough. It will therefore reflect selectivity primarily in the 
central pass band. For these reasons, it is recommended that experimenters report 
both the estimated parameters and 3-dB bandwidth, discontinuing use of BWER 

as it has most frequently been used for filter shapes to which it is inapplicable. 

S. Summary 

It has been shown that the formulae given by Patterson and Moore (1986) for 
fitting detection thresholds to roex filter shapes, and for calculating equivalent 
rectangular bandwidths are in error. The effect of these errors is small for the vast 
majority of studies on normal hearing listeners but may be serious for studies with 
hearing-impaired listeners, or moderately serious for normal listeners in the low-
frequency range. Errors in estimation can be completely avoided by the use of 
appropriate limits of integration in derivations, limits which represent the 
frequency extent of the notched noise. The resulting formulae are only marginally 
more complex than the simplified approximate ones, and represent a trivial 
increase in programming and computing time. Limitations in the use of 
equivalent rectangular bandwidth have been pointed out, and the use of a 3-dB 
bandwidth suggested instead. 

Figure 4. Three 
different measures 
of 	relative 
bandwidth for the 
roex(p) model, 
each as a function 
of p. The upper 
(dashed) line gives 
the BWER:WRONG 
while the lower 
(dotted) line gives 
3-dB bandwidth. 
The middle (solid 
line) 	gives 

HWER:EORRF,CT• 

203 

202 

L7 

Iv. 

Thirdly, one can report p values directly, although the meaning of such 

numbers is obscure to the uninitiated. Finally, one can calculate 3-dB bandwidths 

(as has been done, for example, by Glasberg. Moore & Nimmo-Smith, 1984). 

This has Ihe advantage of characterizing the properties of the auditory filter in its 

main passband, something which a true equivalent rectangular bandwidth does 

not. For ihe roex(p) filler, the 3-dB bandwidth (BW3dn) may be derived as 

follows. Because a 3-dB change is equivalent lo a reduction in intensity of a 

factor of 2, we first solve for g3dB xn: 

where gMB represents the normalized upper frequency limit of the 3-dB passband 

of the filter. 

As of g3dB and p always enter equation (30) as a product, and never 

separately, this is cquivaleni lo solving ihe following equation for x: 

(l+x)e"x-0.5 =0 . (31) 

As such an equation cannot be solved in closed form, we use instead a numerical 

root-finding algorithm to find that x « 1.6783. Clearly Ihcn: 

pg3dD-1.6783 , 

or: 

(32) 

(33) 

The value of g3<1B is convened back into frequency using equation (6). This f3dB 

will ihen represent the frequency value at which ihe filter is 3 dB down from its 

peak on the upper frequency side. In order to calculate 3-dB bandwidth, f0 must 

be subtracted from it, and ihis ihen needs lo be multiplied by 2: 

(34) 

(35) 

Finally, substituting (33) into (34) gives: 

DW 
3dH 

Recall however, that 4fo/p is an approximation to the equivalent rectangular 

bandwidth fora rocx(p) filter. As both BWER:WR0NG and BW3dB are propor 

tional to 1/p, they are clearly proportional to one another, with BWER:WRONC 

being about 20% larger than BW3dB. Figure 4 shows how the three measures of 

bandwidth vary as a function of p for a roex(p) filler. 
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Using 3-dB bandwidlhs has two slight drawbacks. Firstly, as argued in the 

previous section, g should not be allowed to become greater lhan I. Thus, for a 

roex(p) filter, this limits the calculation of a 3-dB bandwidth to fillers wiih 

p £ 1.678. Secondly, numerical root-finding algorithms are necessary to 

calculate 3-dB bandwidlhs, albeit very simple ones. The advantages, however, are 

many. The concept is the most commonly-used one for characterizing filters, and 

is applicable to all members of ihe rocx family (in fact, all fillers that arc not too 

wide). For the roex(p.r) filter, r will have little effect on the 3-dB bandwidth as 

long as it is small enough. It will therefore reflect selectivity primarily in the 

central pass band. For ihese reasons, it is recommended that experimenters report 

both the estimated parameters and 3-dB bandwidth, discontinuing use of BWER 

as il has most frequently been used for filler shapes to which it is inapplicable. 

5. Summary 

It has been shown that the formulae given by Patierson and Moore (1986) for 

fitting detection thresholds lo roex filler shapes, and for calculating equivalent 

rectangular bandwidlhs are in error. The effect of ihese errors is small for the vast 

majority of studies on normal hearing listeners but may be serious for studies with 

hearing-impaired listeners, or moderaicly serious for normal listeners in the low-

frequency range. Errors in estimation can be completely avoided by the use of 

appropriate limits of integration in derivations, limits which represent the 

frequency extent of the notched noise. The resulting formulae arc only marginally 

more complex than the simplified approximate ones, and represent a trivial 

increase in programming and computing time. Limitations in the use of 

equivalent rectangular bandwidth have been pointed oui, and the use of a 3-dB 

bandwidth suggested instead. 
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ERRATA FOR: 

DERIVING AUDITORY FILTER CHARACTERISTICS FROM 
NOTCHED-NOISE MASKING DATA: 

MODIFIED DERIVATIONS 

Stuart ROSEN 

which appeared in Speech, Hearing and Language: Work in Progress (1989) 
Volume 3, pages 189-204. 

A number of equations in the above-named paper in the last progress report were 
unfortunately found to be in error. The correct equations follow. 

pg. 195: 

Ps  = 2 k No  fo si ROEX(g) dg 
	

(12) 

gnw 

pg. 199: 

Ps= kNofop-1  [2(2+pg.) e-Pgin, _(2+pgio) e-Pgio_ (2+pg hi ) e-Pghi 1 j 	(A) 

pg. 200: 
. 	-(2+p) e-  P  x 100 

	 (28) 

4 -(2+p) e-  P 

pg. 201: 

BWER:MOD = 2f0 [p-1 (1- r )(2 - ( 2+p) e- 1)- 11 	(29) 

pg.202 

BW3dB  = 2f0  g3d8 	 (34) 

Acknowledgements. I am most grateful to Richard Baker for his assistance in 
documenting these corrections. This work was supported by the Medical Research 
Council of Great Britain. 
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CO 

I Ps = 2 k No f0 | ROEX(g) dg (12) 

Snw 

pg. 199: 

Ps= kNofop-1 [2(2+pgnw) e-P&- -(2+pgb) e-»»-(2f pgM) e-» ] (24) 

pg. 200: 

= -(2+P)e"P xlOO C28) 
4-(2+p)e"P 

pg. 201: 

bWer:mod = 2fo [F1 (1- r )(2- (2+p) e" P)- r] (29) 

pg.202 

BW3dB = 2fog3dB (34) 

Acknowledgements. I am most grateful to Richard Baker for his assistance in 

documenting these corrections. This work was supported by the Medical Research 

Council of Great Britain. 
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